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We describe the interaction of three aspects core to a personalized scheduling
task. First, we develop a preference model designed to capture user preferences for
the task of scheduling a meeting request between multiple people, and a methodol-
ogy for preference elicitation to initially populate this model. Second, we explain
a natural-language-based elicitation of the meeting request details and constraints,
and outline the solving of the resulting constrained scheduling problem (with pref-
erences). Third, we describe the display of solutions to the scheduling problem to
the user, as candidate scheduling options with explanations, and detail unobtrusive
learning of revisions to the preference model from the user’s choices among the can-
didates. We describe the user studies that informed our design choices, and assess
the resulting system in terms of the quality of scheduling options presented, accord-
ing to the user. The scheduling task enabled by the integration of these aspects has
been implemented within a deployed application.

∗Contact author
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1 INTRODUCTION

All too often, arranging meetings in an office environment turns into a tedious process. One
common method that people employ is a series of emails to propose, reject, counter-propose,
and eventually agree on a time. The effort consumed in such practices motivates the opportunity
for automated assistance in scheduling.

Although a number of fully- or semi-automated scheduling systems have been developed, they
have suffered from low adoption rates for two main reasons [14, 32, 40]: they fail to account for
the personal nature of scheduling, or they demand too much control of an important aspect of an
individual’s working world.

The personal nature of scheduling is most directly seen in situations where a user’s meeting
request cannot be fully satisfied. For example, suppose that Alice requests a 90 minute meeting
with Bob and Chris next Tuesday afternoon, but no time is available to all during that period.
Some users may prefer the option of a shortened 60 minute meeting, while others (like Alice)
may prefer the full 90 minute meeting Tuesday morning. Most users would like to be presented
with both options (more generally, with all relevant options, of which there can be many in
such over-constrained situations), but such that the options they most prefer have priority in the
presentation. It is precisely in these difficult, over-constrained situations, in which there may be
many competing factors and many possible relaxations of the meeting request, where scheduling
assistance is most useful. But to be of real value here, an automated scheduling assistant must
actively account for a user’s scheduling preferences.

This report describes our work on modelling, eliciting, learning, and reasoning about the
scheduling preferences of an individual. The approach we take is to combine initial, lightweight
elicitation of scheduling preferences with unobtrusive, online refinement of them. This personal-
ized preference model informs a constraint-based scheduling engine that computes and presents
options in response to a meeting request. The user may select one of these options, request
further options, or refine her meeting request. By initially eliciting the user’s preferences, the
system can offer reasonable scheduling options from first use; by refining its knowledge, the
system can become progressively more capable and trustworthy over time [20].

While prior research has looked at one or more of these aspects — modelling and eliciting,
learning, and reasoning — the resulting systems have rarely sought to encompass all three. For
example, representing and learning user preferences but not performing sophisticated reasoning
to offer scheduling options [25], or representing preferences and performing constraint reasoning
but not updating the preferences by learning [13].

The key contribution of this report is a description and analysis of a preference model that
balances the elicitation, learning, and constraint reasoning trade-offs within a semi-automated
scheduling system. First, for elicitation, more expressive models better capture the nuances of
user preferences, but require more effort to specify. Second, for learning, expressive models
require significant training (and tend to overfit), while inexpressive models cannot distinguish
between candidate schedules that are distinguished by the user. Third, for automated searching
for and ranking of candidate schedules (hereafter, constraint reasoning), it is more difficult to
define and reason over complex objective functions, preferences, and constraints.

Based on our preference model, the end-to-end semi-automated scheduling assistance enabled
by the integration of these three aspects has been implemented within a deployed system called
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Figure 1: Use of the preference model in PTIME.

PTIME [2]. PTIME, a component of a larger cognitive assistant named CALO [29], manages
the calendar and the scheduling requests of a CALO user in a mixed-initiative manner. Figure 1
shows the process. PTIME elicits scheduling preferences (step 0); elicits a meeting request (step
1); computes candidate schedules (possibly relaxations) in response to the request, by means
of a Constraint Reasoner module, and displays a subset of the candidates to the user as options
(step 2); and accepts the user’s choice of the desired schedule option (step 3). Based on which
option the user chooses for each request among the presented options, the learning module in
PTIME updates the parameters of the preference model instance (step 4) [9]. The updated model
becomes the basis of reasoning over candidate schedules for the next scheduling request.

The dashed arrow from step 3 back to step 2 indicates the user’s ability to reject all the pre-
sented schedule options and revise her scheduling request. She might do so because she finds
none of the options satisfactory, or because seeing the options has stimulated her to refine her
request or explore an alternative.

At present, the PTIME user organizing the meeting decides which meeting option to select,
taking into consideration others participants’ generic scheduling preferences. In the future, she
will be able to also take others’ meeting-specific preferences into consideration. The selected
meeting option is presented to invitees for inclusion or otherwise in their calendars. In the
simplest form of negotiation supported by PTIME, the other participants besides the organizer
may simply accept the meeting request or not. The system is being developed to support more
elaborate forms of negotiation.

We begin by describing our first user studies and the requirements on the preference model
that we derived from them. We then describe our model, based on Multi-Attribute Utility Theory
(MAUT). [19]. Next, we describe the interfaces and design choices for eliciting both an initial
instance of the model (preference elicitation), and the specification of and constraints on meeting
requests (problem elicitation). The following sections describe the presentation of schedule
options and the learning based on user choices, and then report a set of studies and experiments
we conducted to validate (or otherwise) the three aspects of model and elicitation, learning, and
reasoning, and the overall user experience of the PTIME system.
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2 DEVELOPMENT OF A BALANCED PREFERENCE MODEL

An earlier model of user scheduling preferences in the PTIME system, reported in [9], sought to
capture temporal preferences (day and time of events) for under-constrained meeting requests. It
was composed as a weighted linear sum of features such as meeting start and end times. Building
a constraint problem representation and reasoning over it, to find preferred schedule options ac-
cording to the model, was straightforward. Refining a model instance, likewise, proved effective
using support vector machine learning techniques [17]. Despite these positive aspects, the model
could not capture non-temporal preferences, such as for meeting participants, and its expressive-
ness was too limited to capture how temporal and non-temporal criteria interact. Compared to
the under-constrained case, these two aspects have a significant role for over-constrained meet-
ing requests.

2.1 User Studies on Scheduling Habits

To gain insight into how individuals arrange meetings, and the factors that influence their decision-
making regarding how to propose and respond to meeting requests, we conducted an informal
user study. The study consisted of two parts: an in-situ diarying by the subjects, and a post-hoc
evaluation of the diary combined with a semi-structured interview. We did not expect substan-
tive quantitative data to result from the diaries; rather, our aim in the study was to understand
the qualitative factors influencing the user’s scheduling practice: both their individual nature and
their mutual interaction.

Eleven subjects took part in the study, all members of our organization. Their roles included
software engineer, engineering manager, researcher, program manager, and administrative staff.
We asked the subjects to maintain a diary over one week’s worth of scheduling activities, keeping
track of how meetings were scheduled, what decisions were made and why they were made. We
targeted some subjects with crowded, constrained schedules. Two of the subjects were unable to
perform the diarying, either due to excessive busyness (despite the low overhead of the exercise),
or because their schedules are managed by their administrators. We nonetheless interviewed
these subjects regarding their scheduling preferences. In one case, we asked an administrator to
perform the diarying and interviewed her with respect to scheduling for the individual she assists.
The fivefold foci of the study were event characteristics (e.g., one-on-one vs. group meetings),
scheduling processes (e.g., iterated refinement of a time), decision factors (e.g., relationship to
meeting host), preferences, and scheduling needs.

Meetings/events We found that the subjects perceive three dimensions to the meetings on
their calendars: (1) one-on-one vs. group (one-on-one meetings are often walk-in/impromptu
while group meetings are scheduled in advance); (2) mandatory vs. optional attendance (the
subjects often place optional events (e.g., seminars) on their calendar, with the understanding that
they may be deleted/overlapped); and (3) fixed vs. floating (a sample floating event is “exercise
at least twice a week”).

Process We found that the subjects schedule events in a variety of ways, including: (1) walk-
in (most often used for one-on-one and for critical meetings); (2) constraint satisfaction (used
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for group meetings: e.g., host suggests a time window and asks for everyone’s constraints; if
there is a viable time, the meeting is set; otherwise, the process repeats); (3) iterated refinement
(used for one-on-one meetings: e.g., A suggests tomorrow, B says afternoon, A asks “2pm?”,
B responds “how about 3pm?”, A says okay); (4) add-in (used for meeting announcements
and recurrent meetings); and (5) soft scheduling, i.e.not placed in the calendar (often used for
tasks/todos and other floating events).

Factors We found that the subjects take into consideration a handful of factors that are a
subset of a broadly common list, when scheduling a meeting and when deciding whether to
accept a meeting request. We group the factors into seven categories: (1) importance (of the
meeting; its importance to you, your importance to the meeting); (2) urgency/criticality; (3)
interest; (4) relationships (host, relationship to host; other participants, relationship to other
participants [40]); (5) perturbation (effect on other meetings); (6) stability (often characterized
as “number of times the meeting has been rescheduled”); and (7) preferences (of the individual
and of others). The relative importance of the features varied considerably between subjects.

Preferences We found that the subjects explicitly indicated preferences for or against some
specific features. We group them into four categories: (1) general meeting-specific preferences
(e.g., time of day); (2) general calendar-wide preferences (e.g., fragmentation, density, num-
ber of meetings per day); (3) preferences over how to relax meeting request constraints (e.g.,
proximity to specified time, proximity to specified duration, attendance of high-priority partic-
ipants); and (4) preferences over how to relax calendar-wide constraints (e.g., no overlaps, no
Friday p.m. meetings because of childcare situations, no late meetings on carpool days).

Needs We concluded the interviews by asking “What do you most want out of a scheduling
assistant?” The most common responses were: (1) coordinating meetings between a group
of busy people; (2) intelligent reminders; (3) transparency into assisted scheduling decisions
(e.g., explanations of conflicts and learned preferences); and (4) greater control over scheduling
processes (e.g., accepting requests, separation of participants’ availability and preferences).

Among other studies of user scheduling habits and (semi-)automated calendaring tools, Palen
[32], for instance, examined the use in situ of group calendaring software at Sun Microsystems.
Several researchers report that people are reluctant to invest in accurately and fully informing a
scheduling system of their preferences (to the extent that they can articulate them) unless either
(1) the process is not burdensome and they are persuaded of the benefit; or (2) they are mandated
to do so [14, 40]. Other studies support our finding that even when people are confident in
the behavior and the decisions of a (semi-)automated system, they seek transparency into its
reasoning [1, 32].

Our own study and prior work also demonstrates that evaluation of scheduling options is con-
tingent on multiple criteria and their interaction [20, 3]. Accounting for the relative importance
of these features is crucial if we are to offer the user desirable relaxations for over-constrained
requests. Whereas [13, 9, 26] and others assume no interaction between the criteria in their
preference model — which simplifies the learning and solving aspects (to the extent that earlier
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work accounting for preferences makes use of both learning and reasoning) — this choice limits
the expressiveness of the model.

A set of requirements for a preference model results from these various ethnographic investi-
gations. First, the model must be populated from intuitive (and thus likely qualitative) statements
expressed in terms of concepts that the user is familiar with in the domain, i.e., events, people,
and calendars. Second, the expressiveness of the model must be such that it can capture enough
of user scheduling preferences to enable the personalized scheduling task. Third, the preference
model must be explainable to the user, again in terms of familiar, domain-relevant concepts [25].
Fourth, the preference model must be able to express multiple criteria that factor into the user’s
decisions, and the interaction between the criteria, such as between the meeting duration and
the temporal preferences of other participants. Finally, as we have argued, the model must be
tractable for reasoning and learning, if a practical scheduling assistant is to be built.

2.2 Choquet Integral Model of Scheduling Preferences

The preferences literature is rich with qualitative and quantitative models of varying expressive
power and computational tractability; for surveys, we refer to [31, 10]. The reasoning and
learning methods we wish to bring to bear on scheduling problems are quantitative, and the
features of the preferences are not independent. Suitable models can be based on, for instance,
Generalized Additive Utility (GAI) [7] or Multi-Attribute Utility Theory (MAUT) [19].

To balance the competing aspects of expressiveness and elicitation, learning, and reasoning,
and to meet the above requirements, we chose to adopt the global utility function approach
of MAUT. By providing a single function by which the system can rate alternative schedules,
a MAUT approach is in principle amenable to the schedule evaluation and preference learning
components. The challenge of adopting any approach is to build a model suited to the scheduling
domain, and to adapt reasoning and learning algorithms to it.

A MAUT model is specified by a set of n criteria, a set u1, . . . , un of (partial) utility func-
tions that make the criteria commensurate, and an aggregation function F . An instance of the
model, i.e., a capturing of the preferences of an individual, is specified by the coefficients of the
aggregation function. For example, writing zj = uj(xj), where xj is a value for criterion j, then
F (z1, . . . , zn) =

∑
i aizi for some set of coefficients ak, corresponds to aggregation by a linear

weighted sum.
A weighted sum cannot express interaction between criteria; it assumes that all criteria are

preferentially independent [19]. An aggregation function that avoids this assumption and that
satisfies certain desirable properties is the Choquet integral [12, 21]. The Choquet integral
subsumes a weighted sum, and is able to express multi-criteria trade-offs such as Pareto optimal
decisions that a weighted sum cannot represent. We now explain how we define a scheduling
preference model based on this representation.

From our first user study reported above, augmented by features suggested in prior work in
the literature (e.g., [20, 25, 3]), we identified seven criteria consistent across different users: (1)
scheduling windows for the requested meetings; (2) durations of meetings; (3) overlaps, ordering
constraints, and conflicts between requested and existing meetings; (4) locations of meetings; (5)
participants in meetings; (6) time or duration changes for existing meetings; and (7) preferences
of others participating in new meetings or rescheduled existing meetings [8].
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We deliberately chose criteria expressed in terms of concepts familiar to the user in the do-
main to facilitate elicitation of instances of the preference model and explanation of learned
preferences. Below we describe the formulation of the commensurate utility functions ui. Other
criteria, including the stability of a candidate schedule (how stable it is with respect to new
meetings and meetings that run long) and how much the candidate schedule perturbs the exist-
ing schedule, would add richness to the preference model. However, as we will describe, we
found that the richer model would not be amenable to constraint solving.

With the criteria specified, we next define the Choquet integral aggregation function simplified
to this context.

Definition 1. Let zi = ui(xi), let N be the set of criteria, and let I ⊆ N be a subset of the
criteria.. The Choquet integral is

F (z1, . . . , zn) =
∑
I⊆N

aI

∧
j∈I

zj (1)

where aI is a coefficient representing the degree and type of interaction of the criteria in I , and
where ∧ denotes conjunction.

Over n criteria, specification of the general Choquet integral requires 2n coefficients. A k-
additive or k-order Choquet integral considers only the interactions of criteria sets with k or
fewer criteria. It trades expressiveness of the model for its easier specification. Practical ap-
plications indicate that the 2-order case is usually sufficient [24, 22]. Only n +

(
n
2

)
= n(n+1)

2
coefficients are required to specify the integral. In this case, (1) can be written as

F (z1, . . . , zn) =
∑
i∈N

aizi +
∑

{i,j}⊆N

aij(zi ∧ zj) (2)

where the coefficients ai, i ∈ N , and aij , {i, j} ⊆ N , fully specify the model. The conjunction
operator ∧ can be specialized to minimum. Details of the derivation are given in [24].

In the 2-order case, the coefficient ai ∈ [0, 1] describes the relative importance of criterion i (a
greater value indicates greater relative importance), while aij ∈ [−1, 1] describes the interaction
between criteria i and j. aij > 0 indicates that i and j are complementary criteria, while aij < 0
indicates that they are substitutive; aij = 0 indicates no correlation between the two.

We make the hypothesis that a 2-order model trades off expressiveness (being unable to ex-
press interaction effects among three or more criteria) with ease of model specification and ex-
planation in a way suitable for (1) a constraint-based representation of the scheduling problem,
(2) reasoning over this problem representation, and (3) learning revisions to the model. With
n = 7 criteria, an instance of the model is specified by 1

27(7 + 1) = 28 coefficients. Note, how-
ever, that the reasoning and learning described in the sequel do not depend on a 2-order model,
other than their complexity increases as the number of Choquet coefficients increases.
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3 PREFERENCE AND PROBLEM ELICITATION

Both preference and problem elicitation share the common challenges of eliciting preference
information from a user. On one hand, information that the user does know and can express she
may not be willing to input to the system, especially if the elicitation process is burdensome. On
the other hand, the user may not fully know the information or be able to express it (at least via
the elicitation mechanism offered). Moreover, the very process of elicitation itself is known to
reshape — and at worst bias — the information provided; preferences can even be created by
the elicitation process [33, 41].

Preference elicitation One approach to elicitation of general scheduling preferences is to
derive rankings of schedule options by showing the user specific examples as part of an elicita-
tion phase. groupTime [3] is a scheduling system that takes such an example-driven approach.
Viappiani et al. [41] show that presenting users with carefully chosen examples can help stimu-
late their preferences, a technique known as example critiquing.

An alternative approach to elicitation has the user enter the parameters of the preference model
directly. The scheduling system of Hayes et al. [13] takes such a model-driven approach. The
advantage of this approach is that the elicitation period can be shorter, because the information
elicited has greater entropy. The significant disadvantage is that users must comprehend the
model, rather than examples that are possibly easier to comprehend.

The coefficients of a Choquet integral, the goal of our elicitation, can be derived from state-
ments over examples (“I rate this example more highly than that”) or over the model (“overlap
is more important for me than duration”) [24].

We chose to explore a form of model-driven preference specification for three reasons. First,
we considered that the user’s intuition of the scheduling domain reduces the cognitive effort to
understand the model, in contrast to the need to digest an artificial example before giving mean-
ingful feedback based upon it. This is especially true for over-constrained examples, where a
perception of the calendars and preferences of involved participants is necessary to make an in-
formed judgment over scheduling options. Second, the use of online learning in PTIME updates
the model from examples (real-life examples for which the user already has in mind the meeting
request, and participants’ calendars and preferences, to some degree). Third, we considered it
advantageous to enable the user to employ PTIME without an extended elicitation phase, by
developing a one-shot, model-driven elicitation.

Hence, our approach to preference elicitation combines an interactive, visual interface and
a series of simple elicitation invitations. Each invitation is presented as a panel, such as in
Figure 2, that asks the user to provide some statements of her general scheduling preferences.
The panels are presented in a ‘wizard’ interface that allows the user to freely step forward and
backward through them, and to ignore any invitation (i.e., provide no information for it).

The first panel invites the user to describe her general temporal preferences over a week, by
painting them onto a calendar view ‘canvas’. This direct elicitation of temporal preferences
follows prior calendaring agents, such as [13] and contemporary work, such as [3].

From the information entered by the user, we infer qualitative preference statements on and
between the criteria, and compile these statements into quantitative coefficients in the Choquet
representation. This compilation is performed by solving a linear program (LP); for the details
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Figure 2: A single panel of the criteria preference elicitation wizard. Users are asked to position
each criterion to reflect its importance relative to both other criteria and qualitative
importance labels.

we refer to [24]. The preference statements we infer encompass information regarding both the
relative importances of the criteria (i.e., the ai Choquet coefficients), and the trade-offs between
criteria pairs (i.e., the aij coefficients).

In the panel shown in Figure 2, the classification of the criteria into the four buckets speaks to
the first aspect (ai), and the pairwise relative positions of the criteria speak to the second aspect
(aij). For instance, from the position of the overlap criterion in the ‘very important’ bucket,
the system will infer a value for the corresponding a3 coefficient close to 1. From the relative
positions of this criterion and the duration criterion, the system will infer a value for the a23

criterion less than zero.
This two-stage approach of interactive elicitation followed by compilation is designed to blend

intuitive, lightweight elicitation for the user, in qualitative, domain-dependent terms familiar to
her, with the eventual derivation of quantitative coefficients required by our model. Moreover,
the process is robust to the amount of information, falling back to an uninformative, default
instantiation of the model in the case of no information.1

It is well known (e.g., [19]) that people do not act rationally and often do not have consis-
tent desires. Thus, the preference statements made may result in conflicts. In these cases, we
iteratively relax or remove conflicting statements until the resulting LP is consistent.2

1Equal importance (ai = 1/n) to each criterion; no interaction (aij = 0) between each pair of criteria.
2We judged that any benefit from including the user in this process would be outweighed by the burden of possible

added confusion. Relaxation of inconsistent Choquet models is a research topic beyond our scope here [23].
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Problem elicitation Like preference elicitation, our approach to problem elicitation is based
on an interactive interface. Common office calendaring tools, such as Microsoft Outlook, obtain
meeting details by allowing the user to select a block of time on a calendar interface, and then
filling in details in a form. Recent tools, such as Google Calendar [11], allow the user to specify
the meeting details by entering natural language (NL) sentences. In both cases, such tools are not
seeking to elicit information in order to formulate and solve a problem of presenting schedule
options, but simply to fix a meeting in the user’s calendar.

The information for our scheduling task can be both broader (“An afternoon next week”) and
more specific (“Bob is an optional participant”) than that required by calendaring tools. We are
seeking to elicit not the details of the meeting itself, but details of the meeting request — a poten-
tially rich set of soft constraints that will be used to formulate a constrained scheduling problem
instance. Since the constraints are relaxable, problem elicitation can be seen as elicitation of
problem-specific (in contrast to generic scheduling) preferences.

Thus, the deficiencies of common approaches are magnified. On one hand, form-based elic-
itation varies from restrictive, since the user is limited to the fields in the form, to intimidating,
if the form contains enough fields to allow expression of rich constraints. Further, users are
observed to feel they must fill in a field simply because of its presence [33]. On the other hand,
unrestricted NL can leave the user unsure of what to enter, especially once the illusion that
the system really understands everything entered is (inevitably) broken. Moreover, while forms
place restrictions or requirements on the user, NL provides little guidance: for example, that the
user can specify optional participants.

Figure 3 shows our problem elicitation interface. In the top section of the window we see a
system-user dialogue, following DiamondHelp [37]. In the bottom section of the window we see
dynamic, context-specific content — here the meeting request interface. Based around an NL
input mechanism (centre), the system summarizes the information the user has entered already
(bottom), and stimulates her with ‘example’ lines (top). The design choices and rationale behind
them are discussed in [2].

Because of the NL interface, the user can readily specify soft constraints (i.e., constraints that
may be satisfied only to a degree, in contrast to hard constraints that must be satisfied exactly),
such as preferred times (e.g., “prefer early”, or “prefer 3pm”), and optional and preferred lo-
cations and participants. The user can also flexibly and succinctly specify time windows (e.g.,
“tues afternoon”).

Transparency and predictability are enhanced by the system reporting what it understood:
note the “You entered:” message and the highlighted fields, which provide clarification of what
the system understood. This can be contrasted with the more heavyweight NL clarifications in
RhaiCAL [5]. Our clarification minimizes the cost of poor guesses by the system (another prin-
ciple of Horvitz) by making explicit what it understands, at a glance. Further, auto-completion
removes the burden of typing in (and possibly misspelling) locations, participant names, and so
on. This lessens another characteristic problem of a natural language modality.

The NL interface provides a mechanism for specifying preferences that is designed to be supe-
rior to a form-based direct manipulation input interface. Nonetheless, since easy access to direct
manipulation is among the principles for mixed-initiative user interfaces [16], and recognizing
that some users find a form-based interface more familiar, we provide an option to “Switch to
Form View” that allows direct input of a subset of the possible constraints.
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Figure 3: Meeting request (problem) elicitation interface. The “You entered:” line displays the
previously entered text, while the “Current Meeting Details” show how the system
parsed the text.

Our interface is suited to specification of straightforward temporal preferences for the meet-
ing, such as a combined preference for the morning over the afternoon, and later in the morning
over earlier. It is less suited for specification of finely grained preferences, such as “later be-
tween 10–11am, or as soon as possible after noon, but not between 11–11:30am”. As the
last sentence exemplifies, such highly detailed preferences are cumbersome to describe in text.
Rather, a dedicated direct-manipulation interface for such preference would be preferable [6].
We have not implemented this complementary kind of interface, because our first user studies
indicated that meetings are rarely requested with such detailed preferences. We think it better
for the user to retain these preferences and use them to guide among relaxations of the meeting
request, if warranted, when the schedule options are presented by the system.

Fundamentally, the scheduling domain scopes the statements the user wishes to input so that
restricted NL is practicable, and directs the statements, so that it is intuitive. Altogether, the
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assisted NL interface was favourably received by users in the restricted setting of our calendaring
domain, relative to the direct manipulation interface. Our user studies are reported below in
Section 6.

In the background, while the user is specifying the meeting request, the system retrieves the
schedule of the user and the free/busy times of all specified rooms and participants. Lightweight
constraint reasoning is performed after each change to detect conflicts and display them with
suggestions for removing them. The calendaring domains allows specialized partial satisfaction
and explanation mechanisms [18].

We provide an option for the user to display her current calendar. The calendar display in-
cludes options to overlay the day/time preferences and free/busy availability of participants re-
quested in the meeting so far. Combined, the conflict display and repair suggestions, and the
calendar and preference display, inform the user as she composes her meeting request.

12
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4 CONSTRAINT REASONING

The aim of constraint reasoning is to generate candidate options in response to a scheduling
problem instance that results from problem elicitation (recall Figure 1). This reasoning must
account for the preference model of the user, the constraints and preferences in the scheduling
problem, and both the current schedule and day/time preferences for all involved participants.

To find desirable solutions according to our chosen preference model, the PTIME Constraint
Reasoner must search for candidate schedules using the Choquet integral as the objective func-
tion. Thus, given our preference model and the state of the art in constraint-based temporal
reasoning, we have two questions to address: (1) how to represent the hard and soft temporal
constraints in a form that translates into the criteria we have chosen; and (2) how to extend the
temporal reasoning beyond the simple objective functions found in the literature to the more
complicated Choquet integral.

Both questions arise from the core issue of this work: balancing the need for an expressive
preference model with difficulty of learning and reasoning about it. In previous quantitative
constraint-based temporal optimization work, objective functions were based on simple aggre-
gations of local preference values — values indicating how well each constraint is satisfied (e.g.,
[35]). These objectives do not easily extend to encompass a preference model based on a Cho-
quet integral. First, our model is based on abstract (domain-relevant) criteria, not individual
constraints. Second, the model contains interactions between criteria, something not express-
ible in existing frameworks, even for the case in which each constraint is considered a distinct
criterion.

Our reasoning approach has two facets that correspond to the two questions above. First, we
map each constraint to a subset of the criteria, based on the origin of each constraint. For exam-
ple, a soft constraint expressing allowed durations maps to the duration criterion, and a constraint
expressing that a person cannot attend two meetings at once maps to the overlap criterion. The
mapping is one to many: a constraint can map to multiple criteria.3

To give a sense of how we represent the soft constraints in the meeting problem, Figure 4
depicts a constraint, and preference functions, for an overlap constraint between an existing
meeting (E) and a new meeting (M ) that both involve a common participant. In a hard (i.e.,
must be satisfied exactly) version of this constraint, either the start of the existing meeting must
occur after the new meeting or the start of the new meeting after the existing meeting. In the
depicted soft version, the preference functions allow for the events to overlap but specify that a
smaller is preferred.

Formally, we model the constraints as a Disjunctive Temporal Problem with Preferences
(DTPP) [35]. Adding the mapping from constraints to criteria transforms the DTPP into a
Multi-Criteria DTPP (MC-DTPP) [27]. To optimally solve an MC-DTPP, a solution must be
found that maximizes the value of the Choquet integral equation (2). To optimize over the full
integral (which, recall, is a sum of as many as 2n terms) would be extremely challenging. Every
search point would require significant time to calculate the objective value and, more important,
it would be difficult to develop effective heuristics or pruning strategies.

3An alternate and equivalent view is that a single criterion maps to many constraints. Viewed either way, there is
similarity with GAI preference models [7], in which overlapping subsets of attributes compose each factor.
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Figure 4: A DTPP constraint that represents the soft overlap between an existing meeting E and
a new meeting M involving the same person.

This difficulty highlights the trade-off between model expressiveness and tractable reasoning.
It motivates our choice of the 2-order Choquet integral, which captures at least one level of
criteria interaction, but can be represented using the sum of only 1

2n(n+1) terms. It also guides
our choice of criteria: criteria such as stability and perturbation mentioned earlier are functions
of an entire schedule, and thus do not easily incorporate with the standard DTPP scheme of
aggregating over local preference values.

The second facet of our reasoning is thus an effective algorithm for solving an MC-DTPP
to obtain the scheduling options. The algorithm augments a leading branch-and-bound DTPP
solver [28] with special bounding logic and additional heuristics. We leave the details to [27].
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5 SCHEDULE PRESENTATION AND LEARNING

From the many solutions generated by the Constraint Reasoner we want to present a subset —
the candidate scheduling options — to the user. On one hand, the system must not overwhelm
the user with too many options, but on the other hand, it must present enough options so that the
user can select one that is acceptable. In general, we want to present the most desirable solutions
first (according to the elicited preference model). However, the model will generally be an
imperfect approximation of the user’s “true” preferences, so we also want to present additional
solutions that are not necessarily rated highly but that are qualitatively different from those
thought most preferred according to the current model instantiation. This approach presents
desirable solutions and at the same time also enables the user to explore the solution space.
With each option that relaxes the meeting request, we provide an explanation in the form of a
simplified, natural language summary of the relaxed constraints.

While the elicited preferences provide a starting point for presenting solutions tailored to the
user, an effective scheduling assistant should refine its preference model over time. Thus, we
employ machine learning techniques. It would be disruptive to the user experience to interrupt
with learning questions; therefore, in a deployed setting, learning must happen online using only
feedback obtained through a user’s natural interaction with the system — i.e., through the user’s
selections from among the candidates presented; these are the training examples for the learner.

Recall that in our earlier work, the PTIME Preference Learner acquired user preferences over
temporal schedule features (i.e., day/time preferences) using support vector machine (SVM)
learning techniques for ranking [17]. The learner acquired the weights of a linear schedule
evaluation function that could be used to rank candidate schedules [9].4

Our shift to multi-criteria schedule evaluation fundamentally changes the learning task. While
the task remains to learn a schedule evaluation function, the features of the function are no
longer boolean features representing temporal properties of a schedule, but instead are real-
valued features representing the degree of satisfaction of higher-level criteria ui, each of which
is itself a function of lower-level schedule features, as described earlier. Moreover, the function
being learned is a 2-order Choquet integral, rather than a linear weighted sum. This adds the
constraints that the coefficients obey ai ∈ [0, 1] and aij ∈ [−1, 1], as mandated by the Choquet
model [21, 24].

Observe that the 2-order Choquet integral can be viewed as a linear weighted sum of a new
set of features (criteria) comprising affine combinations of the importance coefficients ai and
interaction coefficients aij . Based on this linearization, we can apply the same SVM learning
techniques as earlier to learn the coefficients (weights) for the resulting transformed function,
subject to the constraints on the values of the coefficients. Because the SVM learning problem
is essentially a quadratic optimization problem, to ensure that the coefficients learned are valid
Choquet coefficients, we could augment the quadratic programming problem with additional
constraints. However, simple rescaling of the learned weights into the range [−1, 1] is suffi-
cient for satisfying the constraint on the interaction coefficients, and we found that the SVM
learner naturally learns positive weights for the importance criteria just from the training exam-

4In that work, our initial focus was on learning preferences in under-constrained situations, although the same
approach could have been used in principle to learn preferences in the more difficult over-constrained situations
as well, by adding features to represent the degree of satisfaction of the different scheduling constraints.
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ples themselves. Thus, in the end, no modification of the input to the SVM learning algorithm
proved necessary.5

Since both the elicited and learned preferences have the same functional form, we use a simple
weighting scheme to combine them into the refined schedule evaluation function

F ′(Z) = α×A · Z + (1− α)×W · Z (3)

where A is the vector of coefficients (weights) for Z representing the elicited preferences and
W are the learned weights for Z. By varying α we can vary the relative influence the initial and
learned preferences have on the evaluation of a candidate schedule. By decaying α over time,
we can dynamically modify this relative weighting to give more consideration to the learned
weights as the learner views more training examples, i.e., as the user employs the system.

Our conversion of the Choquet model to a linear function over an expanded set of features
ensures that we can continue to use a linear kernel. One advantage of linear kernels is that the
resulting learned function is more easily interpreted. (An alternative to the feature expansion
approach would be to change kernel.) However, the feature expansion does lose the connec-
tion between the importance criteria ai and the interaction criteria aij : as far as the learner is
concerned, it is learning relative weights for independent features. Thus, there is no guarantee
that the resulting learned function will be a well-formed Choquet integral and, in fact, we can-
not convert the learned weights back to valid Choquet coefficients. However, the MC-DTPP
solving algorithm discussed in the previous section does not rely on a valid Choquet form but
can accommodate a general MAUT objective function. Hence, provided that our learned func-
tion successfully captures user preferences, we can generate and present desirable scheduling
options.

It is worth emphasizing that, after the transformation of the model, we work entirely with the
linearized model. Both the constraint solving and the online learning work with the new repre-
sentation. Thus the loss of connection between the ai and aij does not hinder the computation
over nor refinement of the model. However, it does present a greater challenge in explaining the
current state of the model instance to the user, since techniques for explaining Choquet models
are based on the original, untransformed coefficients. Providing a user-intelligible explanation
of the current learned model is part of our ongoing work.

5In the few cases where the coefficients for the importance criteria are negative, they are very small and simply
bringing them up to zero or a small positive number did not affect learning performance.
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6 VALIDATION

To assess the value of our approach to the trade-off between representation, reasoning, and learn-
ing, we designed experiments to answer the following questions: (1) will the learning algorithm
converge to a given preference model given consistent feedback; (2) how well do users’ elicited
preferences match their “true” preferences; (3) how well does the Preference Learner perform
using feedback from real users on interesting scheduling instances; (4) does the Constraint Rea-
soner provide optimal solutions in an adequate amount of time; and (5) how well does the entire
system perform in real-world situations?

6.1 Preliminary Evaluation of Learning Algorithm

To validate the learner and to help prepare for deployment, we ran a set of experiments using
synthetic data — both randomly generated target functions (converted Choquet integral coeffi-
cients) as well as randomly generated schedules (feature vectors Z). Each experiment simulated
an online learning situation where, at each iteration, the learned model ranked a set of candidate
schedules, the target model selected the best schedule, and the learned model updated with this
feedback in preparation for the next iteration. Based on the evaluation metrics discussed in the
next sections, the results of these experiments confirm that the SVM learner can successfully
learn the target functions in this setting, often within 10 to 20 scheduling episodes, each involv-
ing 25 candidates. As the number of candidates is reduced, however, the number of iterations
required for convergence greatly increases. Figure 5 shows the rate of convergence for 5 and 25
candidates per iteration.

To test the effects of the quality of elicited (initial) preferences on performance, we varied
how well the initial preferences matched the true target model and then analyzed the effects
of different initial weights and decay strategies. The results suggest that instead of using a
fixed weighting scheme between the elicited and the learned preferences, we should consider
the quality of the elicited preferences in determining both the initial weight to give them and
how aggressively to decay that weight over time. Further experiments, including those reported
below, led us to choose an exponential decay.

6.2 Evaluation of Preference Model and Elicitation

To evaluate whether our preference model was able to capture the essential aspects of an indi-
vidual’s scheduling preferences, and whether our elicitation interface was adequate for users to
initially express their preferences, we conducted a user study consisting of two parts: a session
of preference elicitation with the interface described in the previous sections, and a series of
simulated meeting requests, conducted as a paper-based exercise.

We asked 11 subjects — with roles including software engineer, researcher, program manager,
and administrative staff — to perform a brief interaction with our system to elicit an instantiated
model of their preferences. Some of these subjects had participated in our user habits study
reported in Section 2.1; others had not. We then gave the subjects a hypothetical two-week
calendar of a knowledge worker, containing a moderate number of meetings, events, and dead-
lines. We presented the subjects a series of meetings to organize. For each of the 11 meeting
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Figure 5: Spearman’s correlation coefficient as the number of scheduling instances increases, for
5 and 25 candidates per instance.

requests, we asked each subject to rank 10 options, ties permitted. In an experimental oversight,
each subject was presented with the requests in the same order. However, our later repeat of a
subset of the experiment causes us to believe that the order of the meeting requests did not have
significant impact on the options selected for each request by the subjects.

In contrast to the experiment in the previous section, the aim of this study was to investi-
gate the extent to which elicited (initial) preferences correlated with actual (“true”) preferences,
which are unknown. We based a measure of the subjects’ actual preference on the ranking of
choices the subjects made in each presented meeting request. To quantify the degree of similarity
between the elicited and the actual preferences, we used the Spearman’s correlation coefficient
(ρ ∈ [−1, 1]) [15] between the rankings provided by the subjects and the rankings induced by
the elicited models. A ρ value of 1.0 indicates two identical rankings, while ρ = −1.0 indicates
complete disagreement.

Overall, we observed a weak correlation between the actual and modelled preferences. The
arithmetic mean of ρ across subjects and requests is 0.26, with a standard deviation of 0.32. The
variance between subjects is substantial: the mean ρ value (across the subjects, averaged over
the requests) varies from 0.08 to 0.42.

Figure 6 depicts the variance of ρ for each meeting request. The vertical lines show the range
of ρ values over the subjects, and the boxes indicate one quartile from the mean. Observe that
the weakest correlation is for Request 3, which is the only request for which the mean ρ is
negative (−0.02). Request 3 (“All day travel to LA office”) is a situation where factors outside
those included in our preference model are significant, and thus correlation may be expected
to be poor. By contrast, the strongest correlation is for Request 6 (0.46), which is a situation
with delicate trade-offs between time and participants, the type of situation to which our model
is specifically dedicated. These facts indicate that our chosen features work satisfactorily for

18



Balancing the Needs of Personalization and Reasoning in a User-Centric Scheduling Assistant

Figure 6: Spearman’s correlation coefficient for each request and subject, grouped by request.

the common case. We could add features to address the poor correlation for Request 3, but the
additional features may slow the rate of convergence for the learning and will make constraint
solving more difficult. In free-form interviews after the study, subjects expressed satisfaction
over the features included in the preference model.

The least variance over subjects is Request 1 (0.21 standard deviation), the most is Request
9 (0.48 standard deviation). Request 1 is a simple situation where most of the options are
favorable; here, if the elicited model correlates well with the true preferences of one subject, it
is likely to do so for all subjects. Request 9 is distinguished by conflicts among the preferences
of other participants; here, the subjects assess the value of the options differently according to
how they balance the importance of others’ preferences.

To obtain a baseline for these Spearman ρ values, we compared each subject’s elicited ranking
to the ranking produced with two other means of instantiating the model: a default instantiation
that corresponds to equal weights for all criteria, and a random (and possibly invalid) instanti-
ation in which all Choquet coefficients are chosen randomly. This exposes the extent to which
the correlation is due to the adequacy of the elicitation as opposed to the form of the model, or
any other variable.

The results showed a mean Spearman value (across all subjects and requests) of 0.28 for the
default and 0.27 for the random, both of which are slightly better than our elicited average; the
standard deviation was 0.30 and 0.31, respectively (about the same as for elicited initialization).
If we separate out the five subjects who had seen and used the interface before from the six who
had not, we notice a substantial spread in the Spearman averages: the experienced users had
an average of 0.33 (higher than the default), whereas the inexperienced users had an average of
0.19.

19



Balancing the Needs of Personalization and Reasoning in a User-Centric Scheduling Assistant

We might attribute this result to the elicitation interface, to the subjects’ inability to com-
prehend their statements in terms of real-world scenarios, or possibly to the subjects’ lack of
understanding of their preferences. Informal discussions supported the latter hypothesis: several
subjects reported that the process of ranking schedule options in the exercise helped them real-
ize their own scheduling preferences, in particular over the trade-off of different criteria. As one
subject stated, this indicates that individuals have a poor grasp of their actual preferences in this
area; it suggests we should expect a substantive gap in correlation between elicited and actual
preferences. We allowed two subjects to restate their preferences using our elicitation interface;
both restatements resulted in a small increase in the Spearman correlation (by 0.02 and 0.06,
respectively), which agrees with the results we found with the experienced users above.

To further examine the variance in the results, we asked five of the subjects to perform a
second paper-based exercise. Unknown to these subjects, the second exercise was equivalent
to the first, but with textual descriptions, request order, and schedule option order varied. Of
these five subjects, the mean Spearman correlation decreased for four, and increased for the last
subject. The variance is approximately unchanged for each subject. Only one of these users had a
significant deviation (−0.18), although this user was unique given that he interpreted the exercise
much differently than others (he did not rank any schedule that he deemed “unacceptable”).
These results indicate that there is a moderate but not dominating perturbation factor in the
study arising from the subjects’ inconsistency in their scheduling decisions.

Overall, the small but positive correlation between the actual and elicited preferences can be
explained by several factors: (1) poverty of the chosen preference model (i.e., it does not include
relevant features); (2) inadequacies in the elicitation; (3) lack of users’ awareness of their pref-
erences; and (4) inconsistencies in user scheduling decisions. Based on user feedback, model
expressiveness is only found lacking in situations such as Request 3, exceptional cases for which
the model was not designed. Based on the difference between more and less experienced sub-
jects, (2) and (3) have significance. Based on the small deviations from subjects who undertook
the exercise twice, (4) is found to have a small impact. Together, (2), (3), and (4) point to the
benefit of revising the initial model by learning, supporting our overall paradigm. Lastly, al-
though our lightweight model-based elicitation has advantages, the better performance of the
default than elicited model instantiation for inexperienced users suggests that example-based
elicitation may be valued.

6.3 Learning Experiments on Static User Data

The above study provided an opportunity to evaluate learning on real user data. We performed
a leave-one-out cross-validation experiment on this data to see whether we could measure the
effects of learning. We used each request in turn as the test example after training on the remain-
ing requests, and then averaged the results over all the requests. To evaluate the effects of the
elicited preferences on learning performance, we compared performance with the default and
elicited model initialization. For the baseline (control) conditions, the training step was omitted,
thus measuring the performance of the initial preferences only.

Unfortunately, the amount of data available in the user study was not sufficient to illustrate
the effects of our learning algorithm.

What amount of data would be expected to determine whether online learning has an effect
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(positive or negative)? Figure 5 shows that scheduling with only five diverse candidates requires
well over 20 instances to begin showing significant improvement with respect to the Spearman
metric. Moreover, in real-world scenarios many of the candidates are very similar to or domi-
nated by others. Thus in Figure 5 even five candidates, being generated randomly, are equivalent
to many more candidates in a real-world setting; hence the number of instances required for on-
line learning to be exhibited is significantly larger than 20. In contrast, the study of Section 6.2
made available only 11 instances.

6.4 Evaluation of Constraint Reasoner Performance

One requirement for our model was that it be simple enough to allow the PTIME Constraint
Reasoner to find the top N solutions (N = 35 in our case) in a reasonable amount of time for
an interactive system. For scheduling problems involving four participants, four meetings per
user, and a two-day time period, the average time to find the top 35 solutions is 0.4 seconds.6

Increasing the number of participants to six and then ten, the average times are 4.3 seconds and
14.4 seconds, respectively. A typical six-participant problem has approximately 225 constraints
for each meeting, 140 of which are either disjunctive or contained preferences (non-disjunctive
constraints without preferences do not need to be reasoned about during search, and therefore
have negligible impact on reasoning time).

As the problem size increases, the time to find the optimal solution increases dramatically.
However, our MC-DTPP algorithm still finds high-quality solutions for the largest problems we
encounter (10 users, 20 meetings per user in the relevant time range). We ensure a responsive
user experience by imposing a time limit on the reasoning, returning as the candidate set the best
of the scheduling options found in that time. The computation is anytime: the system continues
to search for further options as the user views those already found, and the user can explicitly
request the system to “Search for More” options.

6.5 Learning Experiments on Dynamic User Data

Our final study evaluated data collected from two separate scheduling sessions. The intent was
twofold. First, to investigate particularly the third and fifth questions posed earlier: learning
performance using feedback from real users on interesting scheduling instances, and overall
system performance in real-world situations. Second, to attempt to collect larger data sets than
in our earlier study with static user data. As we will explain, we were not successful in this
second aim, and thus the first aim could only be partially addressed.

The first source of data for this endeavor was a pilot study with four users, lasting for two
hours. Each subject was asked to perform the preference elicitation step and then asked to
schedule as many meetings as possible within the remaining time. Prior to the study, the calendar
of each user was populated with a small number of meetings in order to increase the likelihood
of non-trivial scheduling situations.

The subjects were asked to schedule the meetings as they would with their own calendars.
Specifically, they were to issue meeting requests to the system like they would in real life, and
to choose the schedules that they normally would. This resulted in two main differences from

6The experiments were run on a 1.7GHz Pentium M with 2GB RAM.
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the previous user study: (1) the scheduling scenarios were closer to the individuals’ real-life
situations, and (2) not all the scheduling instances were “interesting” in the sense of exploring
a wide variety of trade-offs between criteria. For example, if a user enters the request “meeting
re: ‘project status’ next Wednesday with Ken Doran” and both the user and Ken are free most of
next Wednesday, several meeting times are likely to be equally acceptable to the user. Not only
will the learned model already be likely to rank an acceptable meeting time highly (negative
examples provide much more information for learning), but even a poor model would have a
good chance of ranking an acceptable meeting time highly as well.

The fact that not all scheduling situations are “interesting” has mixed implications for the user
experience. Since our Constraint Reasoner will tend to produce preferred solutions for the easy
instances regardless of the quality of the learned model, the user will get the impression that
the system understands their preferences, and is thus likely increase their trust in it. However,
since the learner gets informative data only a fraction of the time, the system will be slower
to converge on the true (and possibly changing) preferences. In this short user study, given an
average of ten scheduling requests made by each participant, only two or three proved useful to
our learner. Furthermore, although up to 35 solutions are presented for each scheduling request,
the average predicted rank of the user’s choice was 2.54; that is, an acceptable schedule was
usually in the first three presented. Thus, there was very little room for learning to improve
performance. Indeed, a leave-one-out cross-validation experiment run on the data collected
in this study showed no clear performance improvement with learning. The early rank of the
subjects’ choices means that the subjects may have simply selected the first acceptable option,
rather than the “best” one. This claim is supported by [32], which claims that scheduling is often
more about “satisficing” instead of “optimizing”.

The data for the second part of our study with dynamic user data came from a week-long
formal evaluation of the CALO system. Sixteen subjects participated in the evaluation. Each
worked with a CALO agent under realistic conditions for a Critical Learning Period (CLP) that
lasted over a week. Questions were administered to two flavours of each CALO after the end of
the CLP. The first flavour, LCALO, made use of the knowledge it learned during the CLP; the
second, BCALO, was stripped of such knowledge.

A set of parameterized questions were instantiated for and asked of each LCALO and BCALO
pair. The scores were aggregated over a large set of such questions that were used to cover
a broad range of cognitive assistant functions. Scoring was derived by comparing CALO’s
answers to the instantiated questions with answers elicited from the subjects in an explicit post
data collection phase. The experimental design, the questions and their instantiations, and the
scoring were conducted by an independent party.

Because the goal of the formal evaluation was to assess the learning ability of the overall
CALO system, the subjects were not exercising PTIME continuously (in contrast to the subjects
in the our own pilot studied described above). Despite the extended time frame of the data
collection period in the experiment, the number of scheduling instances was not substantial.
After accounting for technical difficulties with the system, the data of 13 subjects was usable.
The number of instances per subject varied between 4 and 31; the mean number of instances
was 13 and the median was 11.

We compared the answers given by BCALO, LCALO, and the users, to the three instanti-
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ations of one parameterized question. Each instantiated question asked for a total ranking of
five candidate options to a given meeting request. BCALO uses the default, uninformative in-
stantiation of the Choquet model. We also compared RCALO (random model instantiation) and
ECALO (instantiation derived from the user-elicited preference statements).

Overall, the results on this data agree with the results from the data of our earlier smaller-scale
study of Section 6.2. Model instantiation from elicitation is superior (by Spearman correlation of
the rankings, in response to the question) to a random model instantiation; default and elicited
model instantiations are similar. Online learning is observed, and might even help on more
occasions than it hinders. Throughout, the deltas are small; at least to a large part this can be
attributed again to the modest amount of data.

The true test of our balance between elicitation, learning, and constraint reasoning is how
well our system performs on the complicated scheduling requests similar to those given in our
paper-based study — the difficult over-constrained situations for which PTIME is designed. As
the environment supporting our system becomes more stable, we will begin to collect data over
a longer term and evaluate how quickly our system learns to rank schedules in the difficult cases.
This limited study did reveal that, as a whole, the overall PTIME system provides a positive user
experience even in cases where the learning has no effect.
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7 RELATED WORK

In this section we concentrate on related work in automated and semi-automated calendaring
systems. While both commercial (e.g., Outlook/Outlook Exchange Server, Sun Calendar Man-
ager/Calendar Server) and open source (e.g., Zimbra, UWCalendar) calendaring systems abound
to support centralized solutions within an institution, they leave the task of choosing a meeting
time up to the user, thus avoiding the need to actively reason about user preferences. As an
advanced example, Meeting Maker [36] supports the user in selecting a time by graphically de-
picting the availability of participants. The strength of this and other group calendaring systems
is integration with institutional workflow (e.g., centralized calendar servers, room bookings); it
is a tool rather than a scheduling assistant like PTIME.

While prior academic research has looked at one or more of the three aspects of modelling
and eliciting, learning, and reasoning, the resulting systems have rarely sought to encompass all
three. At the same time, researchers have considered the distributed meeting negotiation task,
which we do not address in this report, from both theoretical ([4, 38]) and system ([39, 8, 3])
angles.

A system we will call Tulsa [13] implements earlier distributed constraint-based negotiation
algorithms [39] with an emphasis on making the meeting scheduling process more efficient.
While Tulsa accounts for a wide variety of user preferences, the preferences are not learned.
Moreover, it remains to be proved that users are willing to view and manipulate a screen of
scrollbars to provide the parameters for Tulsa’s weighted sum preference model.

The value of applying machine learning to user scheduling preferences was recognized by
Kozierok and Maes [20], presenting the Learning Interface agent (LIA). The system learns rules
for how to respond to scheduling situations (e.g., accepting a meeting request or not), and pre-
ferred meeting times. The preference model for the latter is based on user day/time preferences,
and user assessment of the importance of the preferences of other users. The suggested times are
found not by constraint reasoning but by finding the timeslot with the maximum weighted pref-
erence score; non-temporal relaxations are not considered. In further contrast to our work, LIA
requires explicit user feedback to correct mistakes. Its designers [20] emphasize the centrality
of user confidence in an assistive agent, and thus the centrality of both adjustable autonomy and
explanation, e.g., giving confidence levels for agent predictions.

Calendar Apprentice (CAP) [25] takes the antipodal approach. CAP offers no automated
reasoning but provides scheduling assistance in the form of learned recommended values. The
meeting request is elicited by a sequence of prompts (equivalent to a fixed-order filling in of a
form); CAP offers a suggested value at each step and acquires training examples when the user
overrides these values. Thus, the learning is unobtrusive, like PTIME, but in contrast to our
work the learning is performed offline, and rules rather than a preference model are learned.

The same preference model necessary for meeting scheduling is of use in the wider person-
alized time management context. Augur [40], for instance, is a system designed to blend the
flexibility of an individual’s calendaring process while opening up interpersonal communication
via shared calendars. Augur learns models of user event attendance, and augments a calendar
display with iconic, colour, and transparency visualizations.

A similar group facilitation approach is found in groupTime [3]. groupTime models user
temporal preferences and, as Augur, learns models of user attendance. In addition, groupTime
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offers suggested times for a meeting request, based on the participants’ preferences and predicted
attendance. The meeting request time is elicited by painting preferences onto a calendar. In
contrast to PTIME, groupTime offers a web-based multi-phase negotiation process among the
meeting invitees, in a university setting where there is equality among the participants (i.e.,
no designated host arranging the meeting). groupTime’s reasoning is limited to visualizing
the aggregated preference of each timeslot; suggested schedule options created by relaxing the
request are not provided.

Like LIA, CAL, and groupTime, RhaiCAL [5] (a descendant of the RCAL scheduling agent
[34]) presents alternate scheduling options on a calendar view. Like PTIME, RhaiCAL’s mode
of operation is to support a single meeting organizer, rather than the many-equal-participants use
case of groupTime; like PTIME it is intended for the difficult case of over-constrained, multiple-
person meetings. RhaiCAL’s display of schedules is designed to handle over-constrained situa-
tions by indicating to the meeting host each participant’s preferences. While relaxations of the
meeting request are computed, these principally revolve around temporal constraints, in con-
trast with our sophisticated trade-offs. RhaiCAL employs availability bars [6], a interaction and
visualization tool for temporal preferences. Such direct manipulation interface tools could com-
plement our NL-based elicitation of meeting request constraints and preference. They could also
inform the user as she selects among candidate schedules; our current visualization of scheduling
options is based on similar principles to availability bars, but is invoked via an “Explain” option,
rather than being integrated with a simultaneous calendar view of the candidate schedules.

A sibling of RhaiCAL, CMRadar [26] is the work most similar to the approach taken by
PTIME. A CMRadar agent helps its user schedule meetings by parsing out meeting informa-
tion from email. It generates schedule options using a constraint-based scheduler that takes
into account user preferences and presents candidate schedules with a graphical visualization.
CMRadar has a simple natural language parser based on templates that are used to interpret
meeting-related emails. This mirrors our NL input mechanism, but is less flexible and on a
smaller scale. The CMRadar preference model is a weighted sum over scheduling features,
which is a restricted case of our Choquet form. CMRadar uses a passive learning approach to
learn user preferences [30], which contrasts with PTIME’s online, active learning.
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8 CONCLUSION

Personalization is a key requirement for adoption of automated scheduling technology. A model
of the user’s preferences, on one hand, must be expressive enough to capture the salient features
that distinguish one scheduling option from another in the user’s judgment. On the other hand,
the model must be amenable to elicitation to populate instances of it, to explanation, and to
reasoning over scheduling requests to derive candidate schedules. Moreover, if the system is to
adapt itself, the model must further be amenable to the machine learning techniques employed.

Based on an initial user study, we devised a preference model designed to balance these needs.
We have implemented this model, which is based on a Choquet integral form, in a deployed
scheduling assistant agent. The implementation necessitated a user interface design that exposes
the richness of the model without overbearing the user, novel constraint-based reasoning to
find optimal schedules according to the model, and adaption of earlier work in non-obtrusive
online learning to update the model as the user employs the system. A distinguishing feature of
the model developed is the ability to express sophisticated trade-off between schedule features;
capturing such trade-offs is crucial if a system is to offer the user desirable relaxations of over-
constrained meeting requests, the very situation where scheduling assistance is potentially the
most valuable.

The inconclusive results of our experiments point to the difficulty of evaluating a model and
learning process. Positively, the user interviews indicate that our model is expressive enough
to capture user scheduling preferences, to a degree sufficient for the types of meeting requests
made by knowledge workers in a typical office setting. Although we find that learning obtains an
inexact representation of the schedule ranking function (as measured by Spearman’s ρ), the re-
fined preference model obtained by the learning becomes adept at suggesting the most preferred
schedules.

Users found that the implemented system provides reasonable scheduling options from its first
use and exhibits increasing trustworthiness over time — complementary aspects found essential
if scheduling technology is to be adopted in practice [25]. Integration with the user’s existing
calendaring systems and workflow combine with the low demand of the preference elicitation
and learning, to further support adoption of the system [32, 2]. An extensive formal study with
real users in a deployed setting indicates user satisfaction with the overall system.

These positive points said, the experiments were not able to evaluate the success of the our
paradigm of lightweight elicitation of an initial model, and its subsequent non-intrusive refine-
ment. While users found the system’s behaviour satisfactory, the evaluation with human subjects
did not demonstrate that an elicited instantiation of the preference model is superior to a random
instantiation, nor that online learning converges to the user’s true model in practical settings (al-
though in artificial settings it does). In other words, the experiments were unable to determine
the correlation or otherwise between the seen satisfactory performance of the system and the
model, elicitation, and learning approach underlying it.

The reasons for this inability, as noted earlier, include the small number of subjects, a lack
of data for learning to be visible, the difference between “interesting” and “uninteresting” prob-
lem instances, and the difficulty of uncovering the user’s true preferences or capturing them by
approximate metrics.

A central aspect, therefore, of our ongoing work is to design experiments that are able to
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answer the above questions. Toward this goal, we have begun designing a test harness that will
allow us to quickly gather new data and experiment with various preference models and learning
algorithms. The harness will enable more realistic validation before deployment and will help
characterize how well different model and algorithm combinations work for different types of
scheduling instances.

In ongoing work we are considering the use of multiple complementary preference models.
For instance, deploying a simple 1-order Choquet model that is more readily elicited and refined,
for under-constrained problem instances, in conjunction with the existing 2-order model that
is able to capture criteria trade-offs, for critically- and over-constrained instances where the
interaction between criteria is a much more significant factor.

On the offline learning side, we are investigating the merits of more direct, albeit heavyweight,
elicitation of the Choquet complementarity and substitutability degrees between criteria, via
methods from decision theory. On the online learning side, we are investigating hierarchical
learning over the criteria within the Choquet ui functions as well as over the aggregated F
function. We are also exploring adaptive presentation of the candidate set of schedule options,
including learning what options to present (e.g., varying the diversity of the set according to
measures of its informational entropy [42]).

Other avenues of interest include learning the importance of a meeting to an individual and of
an individual to a meeting (although not described in this report, PTIME has an initial capability
in both areas), predicting the likelihood of a participant’s attendance at a meeting (as for instance
done by [40]), facilitating negotiation with other users to refine or modify the organizer’s chosen
meeting option, exploring visualization of others’ preferences and predicted attendance ([3, 6]),
and transfer learning of typical preference models between users ([3]). Last, we are working on
explaining the system’s conclusions based on the Choquet model, in the context of expanding
our work from meeting scheduling to wider calendar management and negotiation processes.
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